Optimal jump set in hyperbolic conservation laws
نویسندگان
چکیده
منابع مشابه
Optimal Control of Nonlinear Hyperbolic Conservation Laws with Switching
We consider optimal control problems governed by nonlinear hyperbolic conservation laws at junctions and analyze in particular the Fréchet-differentiability of the reduced objective functional. This is done by showing that the control-to-state mapping of the considered problems satisfies a generalized notion of differentiability. We consider both, the case where the controls are the initial and...
متن کاملHyperbolic Systems of Conservation Laws
Conservation laws are first order systems of quasilinear partial differential equations in divergence form; they express the balance laws of continuum physics for media with "elastic" response, in which internal dissipation is neglected. The absence of internal dissipation is manifested in the emergence of solutions with jump discontinuities across manifolds of codimension one, representing, in...
متن کاملHyperbolic Systems of Conservation Laws
Its purpose is to provide an account of some recent advances in the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After a brief review of basic concepts, we describe in detail the method of wave-front tracking approximation and present some of the latest results on uniqueness and stability of entropy weak solutions. 1-Review of basic theory. This chapter...
متن کاملConservation Laws in Optimal Control⋆
Conservation laws, i.e. conserved quantities along Euler–Lagrange extremals, which are obtained on the basis of Noether’s theorem, play an prominent role in mathematical analysis and physical applications. In this paper we present a general and constructive method to obtain conserved quantities along the Pontryagin extremals of optimal control problems, which are invariant under a family of tra...
متن کاملVanishing Viscosity Approximation to Hyperbolic Conservation Laws
We study high order convergence of vanishing viscosity approximation to scalar hyperbolic conservation laws in one space dimension. We prove that, under suitable assumptions, in the region where the solution is smooth, the viscous solution admits an expansion in powers of the viscosity parameter ε. This allows an extrapolation procedure that yields high order approximation to the non-viscous li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hyperbolic Differential Equations
سال: 2020
ISSN: 0219-8916,1793-6993
DOI: 10.1142/s021989162050023x